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Abstract—A compartmental mathematical model for diabetes is
developed. The model describes the dynamics of the spread of Type-
2 diabetes. A theoretical investigation in the non-adherence to drugs
is investigated. A system of differential equations is analysed by
stability analysis, the non-trivial critical point obtained is locally
asymptotically stable under the given conditions. In-host mathemat-
ical model for glucose tolerance test (GTT) is considered, actual
glucose data values are fitted using Matlab least squares curve
fitting technique. Two methods are used to numerically compute the
distributions of steady states of diabetic sub-populations. The Gauss-
Seidel method is more accurate than the Jacobi method. The results
show that more than 50% of clinical diagnosis effort need to be
applied to have more diagnosed population than undiagnosed. Non-
adherence to drugs make the control of diabetes difficult. Other non-
clinical activities such as campaigns against unhealthy lifestyles can
help control diabetes. The GTT model show that if strict diet and
medication is followed diabetes can be controlled.

Keywords—Type-2 Diabetes, non-adherence, Gauss-Seidel
Method, Jacobi Method, GTT model

I. INTRODUCTION

D IABETES is a disease that is caused by the body’s failure
to produce insulin which regulates the amount of blood

sugar [1]. Insulin is produced by beta cells that are in the
pancreas, when these beta cells die, the amount of insulin
produced is low. This is normally caused by lack of physical
activity and obesity [2]. Diabetes is also hereditary, it develops
on people who are genetically susceptible and is now an
epidemic [3] The failure to control blood sugar levels leads to
more complications. The details on how diabetes is caused is
not clearly understood [4].

About 3% of the world’s population is diagnosed with
diabetes. Most diabetes deaths are related to undiagnosed cases
and non-adherence to drugs. The world’s health care cost
on diabetes is increasing as the number of cases keeps on
increasing, this makes the disease difficult to control. Research
has shown that 9.9% of the world’s population will have
diabetes by 2030. Diabetes is responsible for between 2.5-
15% total healthcare expenditure, costing about 153 billion
dollars and is expected to double by 2025 [5].

The diagnoses of diabetes disrupt one’s own life and in-
volves a lot of work in terms of taking medication and glucose
monitoring [6]. This brings about the aspect of non-adherence.
On first diagnoses some people fail to accept this condition
and do not take medication immediately. This is sometimes
referred to as the denial stage. Other non-adherence issues
arise from religious affiliation; In some African religious
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beliefs, taking medication is regarded as a sin and among
some African Americans, there is an expectation that devine
intervention can help healing diabetes [7]. This creates a large
number of non-adherence cases. 50% of people are diagnosed
with diabetes at is complication stage [8]. These complications
include kidney failure, amputation, blindness, cardiovascular
diseases [9].

The study of diabetes mathematical models has been studied
by among others, Enagi et al. [10] who studied diabetes
complications using the Homotopy perturbation method. Ap-
puhammy et al. [11] investigated age-specific diabetes inci-
dence using body mass index. Rusado studied mathematical
models for detecting diabetes. Duun-Henriksen et al. [12]
developed a stochastic differential equation based on Grey-
box models in diabetes, Coll et al. [13] used a matrix model
to study and estimate future diabetes prevalence, these studies
advanced the study of diabetes and its complications.

Diabetes can be treated but patients in most cases do not
recover completely; the treatment involves taking medication
in the form of tablets in type 2 diabetes. Patients with type
1 diabetes need to inject themselves with insulin shots [14].
The treatment if adhered to regulates the amount of blood
sugar to acceptable levels. The treatment of diabetes might be
delayed until complications occur, it might also be difficult to
distinguish between two types of diabetes diseases [15]. The
treatment involves taking measurement using a glucometer to
monitor blood sugar levels on a day to day basis. The control
and taking of medication has been advanced in some cases
patients wear special watches that send glucose signals to
mobile phones. Some systems automatically inject insulin as
and when is required [16].

The study of diabetes can also be considered at cell
level. The glucose-insulin mathematical models give a clear
understanding of what take place in the blood stream glu-
cose levels. Noguchi et al. [17] considered a glucose-insulin
model metabolism for Type 1 diabetes with digestion and
absorption of carbohydrates. Wang et al. [18]considered the
glucose–insulin system, therapies and its applications. Kwach
et al. [19] investigated mathematical modeling of insulin
therapies in patients with Type 2 diabetes. Singh [20] studied
mathematical modelling for detecting diabetes. Kuma and
Kumar [21] investigated mathematical models for glucose-
insulin regulatory system of diabetes, The glucose tolerance
test model (GTT) is considered in Ackerman et al. [22]. This
model is used to determine if a person is diabetic or not by
considering data recordings of glucose levels.

This paper aims at developing a compartmental model of
diabetes which include those diagnosed, not diagnosed, those
under treatment and non-adherence cases. A unique mathemat-
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ical model in the form of differential equations is developed.
Stability analysis is carried out to investigate the conditions
under which the disease persist. A numerical method is used to
predict the population distribution for all the four groups. The
data from glucose level of a diabetic individual is fitted using
MATLAB least squares fitting. The data is used to determine if
the individual is indeed diabetic or not. Data from eating low
GI and high GI foods is considered and its effect on glucose
levels is investigated. The GTT model is used to perform these
investigations.

mds
August 11, 2019

II. MATHEMATICAL FORMULATION

A compartmental model for diabetes is developed, the
population is divided into four, those diagnosed with diabetes
x1, undiagnosed cases x2, those under treatment x3 and non-
adherence cases x4. (See Figure 1)

x1 x2

x3
x4

 S
(1- )S

(  + d1)x2(  +d2)x1

 x1
(1- )x1

 x3

 x4

 x3 (  + d3)x4

 x2

Fig. 1. Schematic for diabetes compartmental model

The differential equations describing the dynamics in Figure
1 is given by

ẋ1 = ΛS − (µ+ d2 + 1)x1 + λx2, (1)
ẋ2 = (1 − Λ)S − (µ+ d1 + λ)x2, (2)
ẋ3 = τx1 − (µ+ φ)x3 + νx4, (3)
ẋ4 = (1 − τ)x1 + φx3 − (µ+ d3 + ν)x4, (4)

with initial conditions

t > 0, x1(0) = x10, x2(0) = x20, x3(0) = x30,

x4(0) = x40. (5)

where Λ is the rate of diagnosis, µ is the natural mortality
rate, d1 is the death due to undiagnosed cases, d2 is the disease
induced death in diagnosed cases. τ is the rate of treatment
from the diagnosed cases. φ is the rate of non-adherence to
drugs, ν is the rate of movement from the non-adherence class
to the treatment class. d3 is the disease induced death due to
non-adherence to drugs. It is assumed that those undiagnosed
stay a long time in this class and will move to the diagnosed
class at a rate λ. Those in the diagnosed class stay in this
class for a short time and immediately move to the classes of
treatment and non-adherence to drugs. The total population is
given by

N(t) = x1(t) + x2(t) + x3(t) + x4(t) (6)

at time t, this population is approximately 3% of the world’s
population.

A. Stability analysis

In the above model, S is the steady-state value of the
incidence of diabetes. The model reaches its critical point
when ẋ1, ẋ2, ẋ3ẋ4 in eqns (1)-(4) vanish together,

ΛS − (µ+ d2 + 1)x1 + x2 = 0, (7)
(1 − Λ)S − (µ+ d1 + λ)x2 = 0, (8)
τx1 − (µ+ φ)x3 + νx4 = 0, (9)
(1 − τ)x1 − (µ+ d3 + ν)x3 + φx3 = 0, (10)

solving (7)-(10) we obtain

x∗1 =
ΛS(µ+ d1) + λS

(1 + µ+ d2)(µ+ d1 + λ)
, (11)

x∗2 =
(1 − Λ)S

(µ+ d1 + λ)
, (12)

x∗3 = B∗G, (13)

x∗4 = B∗
[
R((1 − τ)µ+ φ)

(R− 1)

]
, (14)

where

B∗ =
ΛS(µ+ d1) + λS

(1 + µ+ d2)2(µ+ d1 + λ)(µ+ φ)2
,

G =
R((1 − τ)µ+ φ) + τ(µ+ φ)(R− 1)(µ+ d2 + 1)

(R− 1)
.

we write the equations (1)-(4) in the form

x(t) = Ax(t) + h(t), t > 0, (15)

subject to x(0) as given in (5), where

x(t) =


x1
x2
x3
x4

 ,

A =


−(µ+ d2 + 1) λ 0 0

0 −(µ+ d1 + λ) 0 0
τ 0 −µ+ φ ν

(1 − τ) 0 φ −(µ+ d3 + ν)



h(t) =


ΛS

(1 − Λ)S
0
0


The characteristic equation of the matrix A is given by

x4 + ξ0x
3 + ξ1x

2 + ξ2x+ ξ3 = 0, (16)
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where

ξ0 = 4µ+ d1 + d2 + d3 + λ+ φ+ ν + 1,

ξ1 = (2µ+ d1 + d2 + λ+ 1)(2µ+ φ+ d3 + ν)

+ (µ+ d2 + 1)(µ+ d1 + λ) + (R− 1)

ξ2 = (µ+ d2 + 1)(µ+ d1 + λ)(2µ+ φ+ d3 + ν)

+ (2µ+ d1 + d2 + λ+ 1)(R− 1)

ξ3 = (µ+ d2 + 1)(µ+ d1 + λ)(R− 1) (17)

where R = (µ+φ)(µ+ d3 + ν)/νφ. R is the threshold value
at which the stability of the system changes. If R < 1 the
disease does not persist and if R > 1 the disease persist.

The roots of the characteristic equation correspond to the
eigenvalues of the matrix A, if −x is substituted in the
characteristic polynomial (16). There are four sign changes
indicating that there are four negative roots. This result indi-
cates that the non-trivial point shown in equations (11)-(14) is
asymptotically stable when R > 1.

III. NUMERICAL SOLUTION

In this section we compute the diabetes population distri-
butions using numerical methods, we compare two numerical
solutions for solving linear equations. The two methods con-
sidered are the Jacobi and Gauss-Seidel methods. The methods
are used to solve systems of the form Ax = b. Equation (12)
takes this form at steady states ˙x(t) = 0, this becomes a system
of linear equations of the form

a11x1 + a12x2 + a13x3 + a14x4 = R1, (18)
a21x1 + a22x2 + a23x3 + a24x4 = R2, (19)
a31x1 + a32x2 + a33x3 + a34x4 = 0, (20)
a41x1 + a42x2 + a43x3 + a44x4 = a, (21)

Where

a11 = −(µ+ d2 + 1), a12 = λ, a13 = 0, a14 = 0, (22)
a21 = 0, a22 = −(µ+ d1 + λ), a23 = 0, a24 = 0, (23)
a31 = τ, a32 = 0, a33 = −(µ+ φ), a34 = ν, (24)
a41 = 1 − τ, a42 = 0, a43 = φ, a44 = −(µ+ d3 + ν).(25)

Parameters used in the model µ = 0.01, d1 = 0.03, d2 =
0.02, d3 = 0.01, λ = 0.1, φ = 0.2, ν = 0.03, τ = 0.3, Λ =
0.5 as in [15].

IV. THE JACOBI METHOD

To solve the system using the Jacobi method, the coefficient
matrix does not have zeros in its diagonal entries. If there are
zeros, then row operations must be performed to avoid zeros
in the diagonal. To solve this system using the Jacobi method
we solve each equation for x1, x2, x3 and x4. We use the
first approximation usually (0, 0, 0, 0) if there is no available
first approximations. The values that are obtained in the first
iteration are then used in the second iteration and so on until
a solution is achieved. In this case we use the procedure as

follows;

x1 =
1

a11
(R1 − a12x2 − a13x3 − a14x4) , (26)

x2 =
1

a22
(R1 − a21x1 − a23x3 − a24x4) , (27)

x3 =
1

a33
(−a31x1 − a32x2 + a34x4) , (28)

x4 =
1

a44
(−a41x1 − a42x2 − a43x3) . (29)

By using the parameters in Table I we obtain the results shown
below

TABLE I
NUMERICAL DIABETES DISTRIBUTIONS OBTAINED BY THE JACOBI

METHOD, VALUES×106

Iter x1 x2 x3 x4
1 2 950 0 0
2 11 950 66 14
3 11 950 83 73
4 11 950 83 73
5 11 950 83 73

V. GAUSS-SEIDEL METHOD

The Gauss-Seidel method is different from the Jacobi
method. The new values are used as soon as they are known.
If x1 is obtained in the first equation it is immediately used
in the second equation to get x2. Next when x2 is obtained
it is used in the next equation to obtain x3 and so on. The
numerical scheme can be represented as follows;

xk+1
1 =

1

a11

(
R1 − a12x

k
2 − a13x

k
3 − a14x

k
4

)
(30)

xk+1
2 =

1

a22

(
R1 − a21x

K+1
1 − a23x

k
3 − a24x

k
4

)
(31)

xk+1
3 =

1

a33

(
−a31xk+1

1 − a32x
k+1
2 + a34x

k
4

)
(32)

xk+1
4 =

1

a44

(
−a41xk+1

1 − a42x
k+1
2 − a43x

k+1
3

)
(33)

By using the parameters in Table II we obtain the following
results.

The last row shown from both the Jacobi and Gauss-Seidel
methods is the steady state values of the distributions for all
the four classes of diabetics.

TABLE II
NUMERICAL DIABETES DISTRIBUTIONS OBTAINED BY THE

GAUSS-SEIDEL METHOD, VALUES×106

Iter x1 x2 x3 x4
1 2 950 12 14
2 11 950 66 73
3 11 950 83 73
4 11 950 83 73

Tables I and II show the numerical steady states for the
populations (x∗1, x

∗
2, x

∗
3, x

∗
4) = (11, 950, 83, 73) values are of

the order of 106.
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VI. RESULTS AND DISCUSSIONS

From the stability analysis carried out in this study, the
critical point is stable. This means that the system tends to
this state even if the system is disturbed or perturbed. The
steady state was also alternatively calculated by using the two
methods that are used to solve linear system of equations.
These methods are the Jacobi and Gauss-Seidel methods.
The comparisons show that the Gauss-Seidel method is more
accurate than the Jacobi method. The solution is obtained
using fewer iterations in the Gauss-Seidel method than in the
Jacobi method. Simulations for the effect of varying some
parameters on the variable is performed and shown in the form
of figures.
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Fig. 2. Diabetes population simulations when rate of diagnosis Λ = 0.5.

Figure 2 shows the diabetes population simulations for the
case when the disease related death rates d1 = d3 > d2. If
clinical diagnosis efforts are Λ = 0.5, the diagnosed cases are
less than the undiagnosed cases. More effort has to be applied
to get more diagnosed cases than undiagnosed cases. It is also
noted that under these assumptions the treated cases are less
than the number of non-adherence cases.
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Fig. 3. Diabetes population simulations when rate of diagnosis Λ = 0.7.

Increasing clinical diagnosis effort to Λ = 0.7 result in more
diagnosed cases that undiagnosed cases as shown in Figure 3.
Further increasing this effort to Λ = 0.8 result in even more

diagnosed cases as shown in Figure 7. The existence of non-
adherence to drugs cases make it difficult to increase treated
cases.
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Fig. 4. Effect of varying non-adherence rate φ on treated and non-adhering
populations

Figure 4 shows the effect of increasing non-adherence to
drugs rate φ on the treated and non-adherence to drugs cases.
Increasing φ result in the decrease in the treated cases and
increase non-adherence cases. Under these assumptions it is
noted that the decrease of treated cases is more enhanced than
increasing non-adherence cases. Religious beliefs also con-
tribute to non-adherence to drugs resulting in high mortality
rate among those not adhering to their medication. This is
attributed to the fact that there are some non-adherence cases
that begin to take their drugs again with the rate ν. This
means that non-clinical efforts to diagnose people is also very
effective.
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Fig. 5. Effect of varying clinical diagnosis efforts Λ on treated and non-
adhering populations

Figure 5 shows the effect of increasing clinical diagnosis
effort on the treated and non-adherence cases. Increasing Λ
result in the increase of treated cases. This also increase non-
adherence to drugs cases. The reason why non-adherence cases
increase is due to those individuals who stop taking their drugs
by the rate φ.
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Fig. 6. Effect of varying non-clinical diagnosis efforts λ on diagnosed and
non-diagnosed populations

Figure 6 depicts the effect of increasing non-clinical efforts
on diagnosed and undiagnosed cases. Increasing λ result in
the decrease in undiagnosed cases and increasing diagnosed
cases. These interventions help to reach those who will have
missed clinical diagnosis and end up being diagnosed. The
effect is more enhanced for the case of undiagnosed cases.
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Fig. 7. Effect of varying treatment efforts τ on treated and non-adhering
populations

In Figure 7 increasing the treatment effort result in increased
treated populations and decrease non-adherence cases. If there
is 100% adherence to drugs there will be no non-adherence
cases. The in-host mathematical models for the group taking
medication and on strict diabetic diet and change of diet will
be discussed in the next section.

VII. IN-HOST DIABETES MODELS

In the previous section we discussed the human population
for diabetes. These included the diagnosed, not diagnosed and
those taking treatment and those not adhering to medication.
In-host models are those that consider what exactly happens
at cell level. In this section we consider the glucose-insulin
mathematical model.

The problem of diabetes emanates from the glucose-insulin
imbalance, this is caused by the death of β− cells in the
pancreas [20], [19]. The production of insulin is therefore

impeded and hence the control of blood sugar level is affected
[18]. When insulin is produced it affects glucose concentration
in a number of ways; enhances glucose transport through cell
membranes, it helps conversion of glucose to glycogen in the
liver which is stored for future use [17]. During this process
a hormone called adrenalin is produced to convert glycogen
back into glucose [21].

In this section we analyse the glucose-insulin models for
diabetics who are diagnosed and do not take medication and
those that take medication. The mathematical model that we
consider is the one proposed by Ackerman et al. [22]. The
model is derived from a system of first order differential
equations that are stated in [19], [20] as

Ġ(t) = f1(G, I) + J(t) (34)
İ(t) = f2(G, I) (35)

Where G(t) and I(t) are the glucose and insulin concen-
trations at any time t. J(t) is the source term for food input.
This model is the linearised and written in matrix form. The
characteristic equation of the coefficient matrix of this system
has complex eigenvalues with negative real parts. This means
that the solution of the differential equation is of the form

G = e−αt(A cos(ωt) +B sin(ωt)) (36)

This is clearly an oscillation or spring-like process, this
equation (36) can then be written as

G = Geq +Ae−αt cos(ω(t− δ)) (37)

where G is the glucose concentration, Geq is the equilibrium
level of glucose concentration, A,α, ω, δ are constants to be
determined. In this model we need to determine the time it
takes for an individual’s glucose level to get back to normal.
If it takes a less time it means the individual is normal and if
it takes more time then it means that the individual is likely
to be diabetic. From the data that was taken from a diabetic
individual under medication and the other one not diabetic
we calculate the period. The critical period Tc = 2π/ωc.
where ω2

c = ω2 + α2. According to Ackerman et al. [22]
If Tc < 4 then the individual is normal and if Tc > 4 then the
individual is diabetic. At this stage two theoretical cases are
considered, one is a comparison of a normal individual and
Type-2 diabetic, the other one is a comparison of a normal
and Type-1 diabetic individuals.
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Fig. 8. GTT on normal and Type-2 diabetic

In Figure 8, the glucose tolerance test model shows that
a normal individual takes a shorter time to reach the equilib-
rium glucose concentration, the concentration oscillates several
times about this value Geq = 7. In this case Tc = 1.26. A
Type-2 individual takes longer to reach the equilibrium value
of Geq = 8.5 and Tc = 6.26.
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Fig. 9. GTT on normal and Type-1 diabetic

In Figure 9 an individual with Type-1 diabetes takes longer
to reach an equilibrium value Geq = 10. The GTT model can
be used to check actual data from any individual to determine
if they are diabetic. In this paper we use data obtained from the
author, this data is then fitted using MATLAB least squares
curve fit. The data is was obtained when different kinds of
foods were consumed. The following tables show different
data sets and their corresponding fitted models. From the GTT
model shown in equation (37), least squares has to determine
the constants Geq, A, α, ω and δ. The determined values are
the ones that describe the glucose concentration profile for an
individual with the given data.

TABLE III
DATA FOR GLUCOSE LEVELS FOR DIABETIC INDIVIDUAL ON DIET AND

MEDICATION

Time 0 1 2 3 4 5 6
Glucose (mmol/L) 3.8 8.7 5.9 5.7 4.3 4.8 5.3

Time 7 8 9 10 11 12 13
Glucose (mmol/L) 4.2 5.9 7.0 8.1 5.3 5.3 5.1
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Fig. 10. GTT on Type-2 diabetic on medication and diet

The glucose concentration of the data in Table III was fitted
using MATLAB least squares curve fit and the parameters
were obtained as follows;

Geq = 5.55, A = 1.59, α = 0.034, ω = 0.82, δ = 1.82

The glucose concentration mathematical model for this indi-
vidual taking medication and on strict diabetic diet is given
as

G(t) = 5.55 + 1.59e−0.034t cos[0.82(t− 1.82)]. (38)

From this data the value of critical period Tc = 7.65, this
indicates that the individual is indeed diabetic. A second data
set was considered in which the individual changed diet from
low GI (Glycaemic Index) food to high GI food. The data set
is recorded in Table IV

TABLE IV
DATA FOR GLUCOSE LEVELS FOR LOW GI FOOD

Time 0 1 2 3 4 5
Glucose (mmol/L) 4.1 6.9 5.3 5.2 4.7 7.0

TABLE V
DATA FOR GLUCOSE LEVELS FOR HIGH GI FOOD

Time 0 1 2 3 4 5
Glucose (mmol/L) 9.5 4.3 3.4 7.3 5.4 10.7

Time 6 7 8
Glucose (mmol/L) 3.5 5.2 9.1
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Fig. 11. GTT on Type-2 diabetic on change of diet from low GI to high GI

Table IV shows data in which the diabetic individual was on
medication and was on low GI diet, this included brown rice,
brown bread, mabele (sorghum mealie-meal),oats porridge.
The diet was then changed to high GI foods which included
white bread, white pap, red meat, the data for glucose levels
is recorded in Table V. The amplitude of the fitted model
increased with increasing time. Glucose levels increased with
high GI foods and it became difficult to control.

VIII. CONCLUSION

The problem of diabetes control caused by non-adherence
to drugs is studied. A system of differential equations is
analyzed by considering the stability at steady states. The
results show that the equilibrium point is asymptotically
stable. The resulting system of linear equations is solved
numerically to obtain the population distribution of different
diabetic groups. The two methods were used and compared.
The Gauss-Seidel method is more accurate than the Jacobi
method. The Gauss-Seidel converges much faster than the Ja-
cobi method converging after three iterations while the Jacobi
after two iterations. To effectively control diabetes, more than
70% clinical diagnosis effort is required. Non-adherence to
drugs and failure to complement diabetes awareness with non-
clinical efforts make the control of diabetes more difficult.
Treatment efforts need to be stepped up much more than
non-adherence. From the GTT model analysis, taking low
GI foods and medication effectively control diabetes (This
produce a cosine wave with constant amplitude). Foods with
high GI spike glucose levels. The glucose concentration data
can used to determine if a patient is diabetic or not. This
method considers data over a long period of time as opposed
to a single testing method. Mabele (sorghum mealie-meal) can
be used to effectively control blood sugar levels.
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